Przejdź do głównej treści

Widok zawartości stron Widok zawartości stron

Zespół Genetyki Ewolucyjnej

Nawigacja Nawigacja

Widok zawartości stron Widok zawartości stron

Publikacje ZGE

Opalek, M., Tutaj, H., Pirog, A., Smug, B. J., Rutkowska, J. & Wloch-Salamon, D. A systematic review on quiescent state research approaches in S. cerevisiae. Cells 12, 1608 (2023). DOI: cells12121608

Tutaj, H., Tomala, K. & Korona, R. Epistasis supports viability under extensive gene-dose insufficiency following chromosome loss. bioRxiv 2023.03. 12.532261 (2023). DOI: 10.1101/2023.03.12.532261

Opalek, M., Smug, B., Doebeli, M. & Wloch-Salamon, D. On the ecological significance of phenotypic heterogeneity in microbial polpulations undergoing starvation. Microbiol Spectr 10, e0045021 (2022). DOI: 10.1128/spectrum.00450-21

Stencel, A. & Wloch-Salamon, D. A pluralistic view of holobionts in the context of process ontology. Front Microbiol, 911577 (2022). DOI: 10.3389/fmicb.2022.911577

Tutaj, H., Pirog, A., Tomala, K. & Korona, R. Genome-scale patterns in the lost of heterozygosity incidence in Saccharomyces cerevisiaeGenetics 221, iyac032 (2022). DOI: 10.1093/genetics/iyac032

Boynton, P. J., Wloch-Salamon, D., Landermann, D. & Stukenbrock, E. H. Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecol Evol 11, 6604-6619 (2021). DOI: 10.1002/ece3.7515

Marek, A., Opalek, M., Kałdon, A., Mickowska, B & Wloch-Salamon, D. Hypersensitive SSY1 mutations negatively influence transition to quiescence in yeast Saccharomyces cerevisiae. Yeast 38, 102-116 (2021). DOI: 10.1002/yea.3536

Nishant, K. T., Wloch-Salamon, D., Wolfe, K. H. & Nobile, C. J. Into the wild-Exploring the life cycles of yeasts. Yeast 38, 3-4 (2021). DOI: 10.1002/yea.3547

Pogoda, E., Tutaj, H., Pirog, A., Tomala, K. & Korona, R. Overexpression of a single ORF can extend chronological lifespan in yeast if retrograde signaling and stress response are stimulated. Biogerontology 22, 415-427 (2021). DOI: 10.1007/s10522-021-09924-z

Biesiadecka, M. K., Sliwa, P., Tomala, K. & Korona, R. An overexpression experiment does not support the hypothesis that avoidance of toxicity determinates the rate of protein evolution. Genome Biol Evol 12, 589-596 (2020). DOI: 10.1093/gbe/evaa067

Opalek, M. & Wloch-Salamon, D. Aspects of multicellularity in Saccharomyces cerevisiae yeast: A review of evolutionary and physiological mechanisms. Genes (Basel) 11, 690 (2020). DOI: 10.3390/genes11060690

Tomala, K., Zrebiec, P. & Hartl, D. L. Limits to compensatory mutations: Insights from temperature-sensitive alleles. Mol Biol Evol 36, 1874-1883 (2019). DOI: 10.1093/molbev/msz110

Tutaj, H., Pogoda, E., Tomala, K. & Korona, R. Correction to: Gene everexpression screen for chromosome instability in yeast primaily identifies cell cycle progression genes. Curr Genet 65, 493 (2019). DOI: 10.1007/s00294-018-0893-x

Tutaj, H., Pogoda, E., Tomala, K. & Korona, R. Gene everexpression screen for chromosome instability in yeast primaily identifies cell cycle progression genes. Curr Genet 65, 483-492 (2019). DOI: 10.1007/s00294-018-0885-x

Marek, A. & Tomala, K. The contribution of purifying selection, linkage and mutation bias to the negative correlation between gene expression and polymorphism density in yeast populations. Genome Biol Evol 10, 2986-2996 (2018). DOI: 10.1093/gbe/evy225

Stencel, A. & Wloch-Salamon, D. M. Correction to: Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory Biosci 137, 207-208 (2018). DOI: 10.1007/s12064-018-0270-9

Stencel, A. & Wloch-Salamon, D. M. Some theoretical insights into the hologenome theory of evolution and the role of microbes in speciation. Theory Biosci 137, 197-206 (2018). DOI: 10.1007/s12064-018-0268-3

Plech, M. et al. Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy. PLoS Genet 13, e1006768 (2017). DOI: 10.1371/journal.pgen.1006768

Pieczynska, M. D., Korona, R. & De Visser, J. A. Experimental tests of host-virus coevolution in natural killer yeast strains. J Evol Biol 30, 773-781 (2017). DOI: 10.1111/jeb.13044

Wloch-Salamon, D. M., Fisher, R. M. & Regenberg, B. Division of labour in the yeast: Saccharomyces cerevisiae. Yeast 34, 399-406 (2017). DOI: 10.1002/yea.3241

Wloch-Salamon, D. M., Tomala, K., Aggeli, D. & Dunn, B. Adaptive roles of SSY1 and SIR3 during cycles of growth and starvation in Saccharomyces cerevisiae populations enriched for quiescent or nonquiescent cells. G3 (Bethesda) 7, 1899-1911 (2017). DOI: 10.1534/g3.117.041749

Marek, A. & Korona, R. Strong dominance of functional alleles over gene deletions in both intensely growing and deeply starved yeast cells. J Evol Biol 29, 1836-1845 (2016). DOI: 10.1111/jeb.12917

Pieczynska, M. D., Wloch-Salamon, D., Korona, R. & de Visser, J. A. Rapid multiple-level coevolution in experimental populations of yeast killer and nonkiller strains. Evolution 70, 1342-1353 (2016). DOI: 10.1111/evo.12945

Plech, M., de Visser, J. A. & Korona, R. Heterosis is prevalent among domesticated but not wild strains of Saccharomyces cerevisiae. G3 (Bethesda) 4, 315-323 (2014). DOI: 10.1534/g3.113.009381

Tomala, K., Pogoda, E., Jakubowska, A. & Korona, R. Fitness costs of minimal sequence alterations causing protein instability and toxicity. Mol Biol Evol 31, 703-707 (2014). DOI: 10.1093/molbev/mst264

Wloch-Salamon, D. M. Sociobiology of the budding yeast. J Biosci 39, 225-236 (2014). DOI: 10.1007/s12038-013-9344-5

Marek, A. & Korona, R. Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67, 3077-3086 (2013). DOI: 10.1111/evo.12196

Pieczynska, M. D., de Visser, J. A. & Korona, R. Incidence of symbiotic dsRNA 'killer' viruses in wild and domesticated yeast. FEMS Yeast Res 13, 856-859 (2013). DOI: 10.1111/1567-1364.12086

Sendra, K., Jakubowska, A. & Korona, R. Comparing the rate of growth and metabolic efficiency of yeast experiencing environmental stress or genetic damage. Acta Biochim Pol 60, 665-669 (2013). PubMed

Tomala, K. & Korona, R. Evaluating the fitness cost of protein expression in Saccharomyces cerevisiae. Genome Biol Evol 5, 2051-2060 (2013). DOI: 10.1093/gbe/evt154

Wloch-Salamon, D. M. & Bem, A. E. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. Appl Microbiol 114, 287-298 (2013). DOI: 10.1111/jam.12024

Wloch-Salamon, D. M., Plech, M. & Majewska, J. Generation of stable, non-aggregating Saccharomyces cerevisiae wild isolates. Acta Biochim Pol 60, 657-660 (2013). PubMed

Jakubowska, A. & Korona, R. Epistasis for growth rate and total metabolic flux in yeast. PLoS One 7, e33132 (2012). DOI: 10.1371/journal.pone.0033132

Korona, R. Gene dispensability. Curr Opin Biotechnol 22, 547-551 (2011). DOI: 10.1016/j.copbio.2011.04.017

Tomala, K., Micinska, M., Paluchniak, U. & Korona, R. Convergent lifespan reaction norms in the yeast cultures exposed to different environmental stresses. J Evol Biol 24, 457-461 (2011). DOI: 10.1111/j.1420-9101.2010.02189.x

Fudala, A. & Korona, R. Low frequency of mutations with strongly deleterious but nonlethal fitness effects. Evolution 36, 2164-2171 (2009). DOI: 10.1111/j.1558-5646.2009.00713.x

Jakubowska, A. & Korona, R. Lack of evolutionary conservation at positions important for thermal stability in the yeast ODCase protein. Mol Biol Evol 26, 1431-1434 (2009). DOI: 10.1093/molbev/msp066

Jasnos, L., Tomala, K., Paczesniak, D. & Korona, R. Interactions between stressful environment and gene deletions alleviate the expected average loss of fitness in yeast. Genetics 178, 2105-2111 (2008). DOI: 10.1534/genetics.107.084533

Tomala, K. & Korona, R. Alleviation of deleterious effects of protein mutation through inactivation of molecular chaperones. Mol Genet Genomics 280, 409-417 (2008). DOI: 10.1007/s00438-008-0374-x

Tomala, K. & Korona, R. Molecular chaperones and selection against mutations. Biol Direct 3, 5 (2008). DOI: 10.1186/1745-6150-3-5

Wloch-Salamon, D. M., Gerla, D., Hoekstra, R. F. & de Visser, J. A. Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc Biol Sci 275, 535-541 (2008). DOI: 10.1098/rspb.2007.1461

Jasnos, L. & Korona, R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet 39, 550-554 (2007). DOI: 10.1038/ng1986

Bobula, J. et al. Why molecular chaperones buffer mutational damage: a case study with a yeast Hsp40/70 system. Genetics 174, 937-944 (2006). DOI: 10.1534/genetics.106.061564

Jasnos, L., Sliwa, P. & Korona, R. Resolution and repeatability of phenotypic assays by automated growth curve analysis in yeast and bacteria. Anal Biochem 344, 138-140 (2005). DOI: 10.1016/j.ab.2005.04.034

Sliwa, P. & Korona, R. Loss of dispensable genes is not adaptive in yeast. Proc Natl Acad Sci USA 102, 17670-17674 (2005). DOI: 10.1073/pnas.0505517102

Korona, R. Experimental studies of deleterious mutation in Saccharomyces cerevisiae. Res Microbiol 155, 301-310 (2004). DOI: 10.1016/j.resmic.2004.01.015

Sliwa, P., Kluz, J. & Korona, R. Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae. Genetica 121, 285-293 (2004). DOI: 10.1023/b:gene.0000039846.12313.98

Szafraniec, K., Wloch, D. M., Sliwa, P., Borts, R. H. & Korona, R. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. Genet Res 82, 19-31 (2003). DOI: 10.1017/s001667230300630x

Szafraniec, K., Borts, R. H. & Korona, R. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98, 1107-1112 (2001). DOI: 10.1073/pnas.98.3.1107

Wloch, D. M., Szafraniec, K., Borts, R. H. & Korona, R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159, 441-452 (2001). DOI: 10.1093/genetics/159.2.441

Korona, R. Genetic load of the yeast Saccharomyces cerevisiae under diverse environmental conditions. Evolution 53, 1966-1971 (1999). DOI: 10.1111/j.1558-5646.1999.tb04577.x

Korona, R. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae. Genetics 151, 77-85 (1999). DOI: 10.1093/genetics/151.1.77

Nakatsu, C. H. et al. Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J Bacteriol 180, 4325-4331 (1998). DOI: 10.1128/JB.180.17.4325-4331.1998

Korona, R. Genetic divergence and fitness convergence under uniform selection in experimental populations of bacteria. Genetics 143, 637-644 (1996). DOI: 10.1093/genetics/143.2.637

Korona, R., Nakatsu, C. H., Forney, L. J. & Lenski, R. E. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc Natl Acad Sci USA 91, 9037-9041 (1994). DOI: 10.1073/pnas.91.19.9037

Korona, R., Korona, B. & Levin, B. R. Sensitivity of naturally occurring coliphages to type I and type II restriction and modification. J Gen Microbiol 139 Pt 6, 1283-1290 (1993). DOI: 10.1099/00221287-139-6-1283

Korona, R. & Levin, B. R. Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47, 556-575 (1993). DOI: 10.1111/j.1558-5646.1993.tb02113.x